MINERAL ACTIVATION: TOWWARDS THE DEVELOPMENT OF A CO_2 SEQUESTRATION MODULE

M. Mercedes Maroto-Valer^{1*},
Daniel J. Fauth², Matthew E. Kuchta¹,
Yinzhi Zhang¹, John M. Andrésen¹, and Yee Soong²

 Department of Energy and Geo-Environmental Engineering and The Energy Institute, Penn State University
 U.S. Department of Energy, National Energy Technology Laboratory

21st Century Energy Plant

 $\label{eq:Vision 21, DOE, USA}$ No environmental impact: Zero CO_2 emissions

Second Annual Conf. on Carbon Sequestration, May 5-8, 2003

Sequestering CO₂: Mineral Carbonation

 $Mg_3Si_2O_5(OH)_4 + 3CO_2 \rightarrow 3MgCO_3 + 2SiO_2 + 2H_2O$

NETL, DOE

- Reaction of CO₂ with noncarbonate minerals, such as olivine and serpentine, to form stable and permanent mineral carbonates.
- Seen in nature as the aging of rocks, the process occurs naturally over geologic time scales.

Mineral Sequestration: Advantages

- CO₂ is transformed into a **STABLE** and permanent mineral carbonate: No future legacy implications.
- Overall reaction is **EXOTHERMIC**: Potential to be economically viable upon further research.
- Potential to produce additional VALUE-ADDED by-products during the carbonation process: Cost effectiveness

• The raw minerals for sequestering the CO₂ exist in VAST, readily accessible quantities.

Los Alamos National Laboratory

Second Annual Conf. on Carbon Sequestration, May 5-8, 2003

Mineral Sequestration: Obstacles

- KINETICS Innovative development of fast reaction routes under milder regimes in a continuous integrated process must be made.
- **EFFICIENCY** Current carbonation studies require prior capture of the CO₂, high pressures, and extensive mineral particle communition, all energy-intensive operations.

Research Objective

ACTIVE CARBONATION

- Promotes and accelerates REACTION RATES and EFFICIENCIES through surface activation to the extent that extensive mineral particle communition and CO₂ capture from flue gases are not required prior to sequestration.
- SURFACE ACTIVATION to accelerate the carbonation reaction efficiency.

Second Annual Conf. on Carbon Sequestration, May 5-8, 2003

Experimental

- The Cedar Hills **serpentine** (antigorite) sample was obtained from the Pennsylvania/Maryland state line district.
- **Porosity:** N₂ at 77K and CO₂ at 273K adsorption isotherms using a Quantachrome adsorption apparatus, Autosorb-1 Model ASIT.
- **SEM studies**: HITACHI S-3500N, where the accelerating voltage was 20KV and magnification was 1500X.
- X-ray diffraction: Range of 9.0 to 65.0 degrees at a step scan rate of 0.07 degrees per minute using a Scintag Pad V unit.
- **High pressure TGA**: Cahn TG151, where the weight change of the sample, either as a solid or in solution, is monitored in a CO₂ atmosphere with pressures up to 1000psi.
- Carbonation studies: CSTR reactor used for the parent and activated samples.

Summary of porosity data

Sample	BET surface area m2/g	Pore Volume ml/g	Average Pore Diameter nm
Untreated sample	8	0.017	8.5
Run-1	16	0.035	7.9
Run-2	17	0.034	7.9
Run-3	330	0.234	2.8
Run-4	147	0.120	3.3
Run-5	122	0.097	3.2
Run-6	104	0.092	3.5
Run-7	15	0.023	6.1

Second Annual Conf. on Carbon Sequestration, May 5-8, 2003

Magnesium solubility

Treatment	% Mg2+ in solution	Conditions
Run-3	71	25°C, 12 hours
Run-6	21	25°C, 12 hours
Run-5	25	25°C, 12 hours
Acetic acid	48*	60°C, 4 hours*

*Maximum extraction yield reported in the literature using acetic acid (Kakizawa et al., 2001)

Carbonation experiments

Sample	% Conversion	Carbonation conditions
Parent	8	155°C, 1850psig. 1 hour
Run-1	70	155°C, 1850psig, 1 hour
Run-8	73	20°C, 650psig, 3 hours
Run-9	54	20°C, 650psig, 6 hours
Run-10	30	20°C, 650psig, 3 hours

Second Annual Conf. on Carbon Sequestration, May 5-8, 2003

SEM Characterization

Raw serpentine

Carbonation Product

Conclusions

- Serpentine minerals have been identified as suitable feedstocks for the mineral carbonation
- It is possible to increase the surface area of the serpentine minerals to 330m²/g, compared to only ~8m²/g for the raw serpentine.
- Following mineral activation, the carbonation reactions can be conducted under mild conditions (20°C and 650psig) compared to previous studies that required >185°C, >1850psig.

Provisional patent submitted

Second Annual Conf. on Carbon Sequestration, May 5-8, 2003

Acknowledgements

- NETL/Department of Energy, University Coal Research Program.
- Bill O'Connor from Albany for study samples and helpful discussions.
- The Department of Energy and Geo-Environmental Engineering and The Energy Institute, Penn State University.